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In the following article boundary layer equations are deduced for a fully ionised two-
temperature plasma. It is assumed that the plasma can be described by the equations de-
veloped in 51 incorporating the simplifications of [2]. If we study the behavior of the
temperature close to the walls in a two-temperature plasma, we are faced with two temper-
ature boundary layers, namely, an electronic boundary layer (where there are sharp changes
in electron temperatures) and an ionic boundary layer (where ionic temperatures evince
sharp change). Equations are derived for the electronic and ionic boundary layers. It is
established that the thickness of the electronic boundary layer is much greater than that
of the ionic temperature boundary layer., Ap approximate method is given for evaluation of
boundary layers in two-temperature plasmas. Cases in which electronic temperature
boundary layer is absent, are given.

Apart from the existence of boundary layers exhibiting sharp temperature changes in
electrons and ions, it is also shown that a two~temperature conducting plasma can embody
e specific ‘screening’, boundary layer adjacent to the wall, in which any temperature dif-
ference of electrons and ions caused by outside sources close to the wall culminates in
values determinable by the combined action of viscosity, Joule heat generation and heat
conductivity- consistent with the afore-mentioned equations. The thickness of this layer
&~ Vw;/y is,over a wide range of defining parameters, much less than that of the dy-
namic or the ionic boundary layer.

The behavior of the electron and ion temperatures within the layer is investigated.
We also show that a thin ‘screening’ layer of thickness ! ~ L / y°, can be established
in the external stream, when the viscosity and the thermal conducti vity of the medium can
be neglected. It is in this layer, that sharp changes in electron and ion temperature dif-
ferences from those caused by external sources at some sections of the stream, e.g. at the
entry to the channelyup to those determined by Joule heating in accordance with the equa~
tiens for the extemaI stream,are set up. These layers are the characteristic feature of two-
temperatare plasma, in single-temperature plasma they do not exist.

Notation.

We shall use the suffix e to denote guantities relating to electrons, i to ions. Index °
denotes dimensioness quantities, w denotes the values near the wall, whilst & defines the
values at the distance & from the wall and o denotes values outside the stream at infinity.
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n is the number of particles in p, and 77 are the pressure and the
unit volume: tensor of viscous stresses;

p is the density of mixture; E and H are the electric and mag-

m is the mass of a particle; netic fields;

V, and V; are the mean velocities of J is the current density;
electron and ion components ; Te and Ti are the electron and ion
v (vxvy) is the mean velocity of mixture; temperatures ;
w is the cyclotron frequency; q is the heat flux;

¢ is the velocity of light;

¥ is the coefficient preceding temperature difference between electrons
and ions in the energy equations;

T, and 7; is the time interval between collisions of electrons and ions respectively,
N,L.T and U is the characteristic number of particles per unit volume, length, temper~
ature and velocity of the medinm respectively;
", ;» %, and o are the coefficients of viscosity, thermal conductivity and the conductance
of the medium;
8, 8, and ai are the thicknesses of the viscous, the electronstemperature and ionic-
temperature magnetohydrodynamic boundary layers

8 is the thickness of the 8-layer in which the temperature differences between
the electrons and ions within the thermally conducting plasma change sharply
from the values determined by external sources close to the wall to the
values determined by the given equations.

{ is the thickness of the y-layer in which the temperature difference between
the electrons and ions undergoes a sharp change from the values determined
by external sources at the channel entry, to the values determinable from
Joule heat in accordance with the equations written down for the external

stream.
x:%z, = = YT R:"%, = o = 0.246R
Mzmg;%i, ¢?:T°R°<1+ —:i—i—}z'rL? (—%+~%)zr°li°zlg

1. Fundamental equations and the dynamic boundary layer. The events which occur
in a fully ionised plasma will be described by the equations obtained in 1], using sim-
plifications from [2]. For clarity we will deal with the case where IRl <& 1
(extension to the case of ®eTe ~ 1 is easy). Expressions for g, @), T, and T; are
derived in [l] Note,that to fulfill the first inequality it is essential that the ion temper-
ature Ti should not be more than {m;/2m )Y times greater than the electron temperature, T,.
The second inequality [3] is fulfilled under the conditions close to the real ones .(Hz 104

gauss, T, =1 ev.) when the number of electrons n, 10 em™3.

The equations which describe the behavior of a fully ionised, two-temperature, quasi-

neutral (ne =~ nj = n), plasma, under the given assumptions become [1 and 9]
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In order to complete the system, equations of state for both electrons and jions should

be added p, = nekT ., pi = nikT; together with Maxwell’s equations (List of symbols is
given at the beginning of the article).

It is easy to check the validity of the following identity

S R
entr Qe GEI0 6 UlTjo a.n

In the equations of motion we have ommitted the electron viscosity. This can be done

[2] when T, <€ (2m; / m,)’s T, for j/enU <C 1. This criterion should be used, since

T, <€ 1, and by virtue of (1.7). Apart from that the term e(n, — n,) E, has been left
out of the equation of motion and out of the Ohm’s Law ¢ (n; — ne)v. It is well known
that these terms can be neglected in magpetohydrodynamics and it is easy to show that
the same applies in case of the equations of magnetohydrodynamic boundary layers. For
the case where the parameter of mutual influence M2/ R ~ {, appropriate estimates
were obtained in [4].

Let us assume, for the sake of clarity, that the mutual influence parameter ¥*/R . 1,
whilst the inertia terms are of the same order as the electromagnetic terms. Suppose that
a velocity change of the order of the velocity itself, takes place within a layer of thick-
ness L. Also, suppose that the order of magnitude of the inertia term is pU2 / L, that
of the viscous term is n{/ / L?, while that of the electromagnetic term is
jH | ¢ ~ cUH? [ ¢®. 1f we now compare the orders of magnitude of the terms in the
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equations of motion (1.2), we arrive at

2
olcctromlg.Nf_W_ 1, olectromagn. Me, inertial __ p (1.8)
inertial R viscous viscous

It is easy to see that when M? ~ 1, the Reynolds number R ~, 1, and the equation
of motion has the most general form (1.2). When M?>> 1 the Reynolds No. is also R>> 1;
viscous terms can be neglected in the main flow. Let us assume that there is a thin layer
of thickness 30, in which the change of velocity is comparable with its value. In this
case the order of magnitude of the viscous terms is equal to 1;U / §,%, while the order

of the inertial and electromagnetic terms remains as before GUH? / ¢2,

It is easy to see that the viscous terms can be of the same order of magnitude as the
electromagnetic ones only within the thin boundary layers of thickness 8, ~L / ]/I-?
Outside of the boindary layers, the viscous terms can be neglected, It is also apparent
that when M?% / R ~ 1 the thickness of the viscous magnetohydrodynamic boundary
layer coincide with that of the conventional viscous hydrodynamic boundary layer.

Such boundary layers, which in the following we shall refer to as the viscous magneto-
hydrodynamic boundary layers were investigated in [4 to 6] in the case of single tem-

perature plasma.

Note that when Te/ Ti ~ (2my/ me)l/‘, then T, ~, [2], and in this case the elec-
tron viscosity should be taken into account in the equations together with the ionic
viscosity. When T',/T;> (2mi/me)l/5, then 7, >> n;, and electron viscosity should be re-
tained in the equations, while the ionic viscosity can be neglected. Also in the above
estimates the quantity R, = pUL /1, should replace R. In this case the thickness of
the viscous boundary layer will be

3,~L/ VR,

Note that the geometry of the flow can be such, that the projection of the electro-
magnetic terms onto the normal is equal to zero, and therefore dp/ oy = 0, as in con-
ventional gasdynamics. In general however, dp [ dy =+ 0.

2. Boundary layer for the difference of temperatures of electrons and ions in a quiescent
plasma. To clarify the behavior of the temperatures of electrons and ions close to the wall,
we shall first consider a special case which is interesting in itself. We shall assume that
in Equations (1.3) and (1.4) the terms describing convective heat transfer, the work of
viscous forces and the changes in temperature in the direction of the x-axis can be ne-
glected. To make things definite we will assume p = const. Then, equations (1.3) and (1.4).
taking account of (1.7), become

d %, d, M2

T o Mot — 10— ) =0 2.1
d 1 49 o
;l—n‘jfa‘%“*"'r (6e— 6:)) =0 2.2)

It should be emphasised that the characteristic velocity U, and with it, the Reynolds
No., have been used in deriving (2.1) and (2.2). As a result of this, the equations (2.1)
and {2.2) can be regarded as a special case of the general energy equations (1.3) and (1.4),
written in a nc -dimensional form. It is these equations that are used to describe the
heat transfer in  fully ionised, quiescent, two-temperature plasma in a onedimensional
framework. It sho 1d be noted that the assumption of onedimensionality does not affect
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the generality of the resaults which follow{see also the remarks at the end of this section).
Heat transfer during the motion of a fully ionised two-temperature plasma in a plane chan-
nel in presence of a magnetic field [3] can also be represented by Equations {2.1) and
(2.2), but in this case a term A {9u/ dn)%/ R, representing work against ionic viscosity,
must be added.

It must be emphasised that on the surface of the wall the electron temperature can
differ from the ion temperature. For simplicity let us assume coefficients ®,, ¥j, and R
to be constant. Subtracting (2.2) multiplied by R®from Equation {2.1) multiplied by
%R | %, ,we obtain the equation for the temperature differences between the electrons

and ions
d2(6,— 0 3 %,
e T RV ey 2.9
where
@2 = R (1 + % [ %e) = yL2 (1 [ %e + 1 /%) (2.4)
From (1.6) we have
%,  13.58 (mi )'/s< T, Y/z
%~ 3906 \2m,) \'T; 2.5)

In actual cases %; [ %o < 1, hence @? can be written
P=yR =yl w
The physical significance of @? is quite clear. If d%0; / dn® ~ 0, — 8; (see (2.2)),
Q')z expresses the ratio of energy transmitted from the electrons to ions during the elastic

collisions, to that, lost by the ions through thermal conduction.

It is evident that the parameter q)2 or an

" 10+ om™> tov om™ analogous one (e.g. yLZ/%,) appears always
M2 2.7-107 2.7-107 when the energy equations of a two-temperature
R 1.5-108 8.3-107 plasma is written in dimensionless form. Solu-
7° 1.8-10° 9.7-10¢ tions of actual problems where this parameter
5 27 . 16'18'11(?_83 9 %:gﬁ is computed, are discussed in {s].
o] cr(xf‘cl 3..5-1013 6.4-101 Let us compute the values of some mag-
®,/%; 4.9-10% 4.9.108 nitudes which we shall require for definite
A 1.62 1.62 values of parameters, in case of a fully ionised
2 plasma. Let T =1lev, T;=Y% ey, L =30 cm,

U =10%cm/sec, m; = 6.4910
Results are given in the adjoining table. We see that @2 >>1. Hence the first term in
Equation (2.3) will be of the same order as the second only when the gradient of the tem-

gm (atomic weight 39.1), # = 10° gauss and n_ = ny, =R

perature difference is very great, i.e. if there is a layer adhering to the wall through which
the temperature changes very sharply in the direction normal to the wall surface. We de-
note the thickness of such a layer by 8, and in the following we shall refer to it as the
8-layer.

Let us now write the orders of magnitude of the first and second term in Equation

{2.3) within that layer
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| (ee - Gi)s e (ee - ei)w !

e ~¢*|8 — 8 | (2.6)

Here and in the following we shall use the suffix w to denote the quantities close to
the wall, 8 to denote the values at the distance & from the wall, and = to denote the values
outside the wall, at infinity.

The quantity | (B¢ — 0:)> — (@e —0:)Y | ~ 10— 0i|(i.e. the difference of tem-
perature change in a layer of thickness 8 close to the wall which would be of the same
order as the difference itself) can only prevail in a layer the thickness of which is
§ ~L |~ L/ VW = ]/m Within the layer whose thickness is §, the term
8 (8. —04) / Oy should be taken into account in Equation (2.3) while outside this
layer the term can be ignored. Also, from (2.3) it follows that outside the layer the tem-
perature difference is

n 93*‘-912(93—9i)°°z1‘—1{;},]'023— 1

%, T (2.7
) /I\
{ \04»‘0;' and, that depending on the current density and other

parameters it can assume any values. Let us consi-

Py (9,-8,)" (6,6)" A
der two particular cases in more detail.

FIG. 1 1. Let (8 — 09> (8. — 04)°, i.e. the
temperature difference close to the wall exceeds that at the distance § from the wall.
Temperature difference §. — 8;, entering the right-hand side of Expression (2.6} will
remain at the same order of magnitude as the difference of temperature close to the wall
(8c —8;)® only within the layer of thickness § ~ L / ' 9°R° = ¥ %;/ y. Outside
this layer the temperature difference between electrons and ions is of the same order as

the temperature difference at infinity. (Formula (2.7)).

2. Let B, — ﬁi)s > (Be —03)” (for instance near the wall 0,0 =0;%, hence
(8e —0:)® = 0). We shall show, in which layer the temperature difference varies from
zero at the wall, to (§; — 6;)® . Assuming that in the right-hand side of (2.6)
8, —8; = (B, —6;) we conclude that the change again takes place within a layer of
thickness § ~ [, / VW}

From this it follows that the difference in temperature of the electrons and ions
occurring near the wall becomes equal to the temperature difference at oo, within a thin

layer of thickness J.

Fig. 1 shows a gualitative picture of the possible behavior of the temperature differ-
ence between the electrons and ions in a layer of thickness 8 ~ Vm in a quiescent
plasma. The right-hand curve depicts the case when there is a large temperature differ-
ence close to the wall, so that (8, —8,)" > (0, —06,)®. The left hand curve illustrates
the case where 0. =8, It is evident that in both cases the temperature difference
close to the wall tends to that at infinity.

We thus see that in a two-temperature plasma a special kind of boundary layer of
thickness § ~ L / Vy°R* ——_:in / ¥, can exist, within which a sharp change in
temperature difference between electrons and ions occurs, ranging from the value of the
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difference at the wall to that at o, Let us study the way in which the electron and ion
temperatures change within the §-layer.

We shall solve Equations (2.1} and (2.2) assuming the transfer coefficients to be
constant, for two types of boundary conditions

Case A when n =41, 0, =0, 6;,.=0,"
1 o 50, CO8h o W
0 = 7 @0 (1 — ) + B (07— 0°)_ ¥ 807 + o8, - BB ()
0 = & 0™ (1 —n2) —at (8" — Zﬂy a0 + af,” + B6"
Case B when n==+41,0, =06 80,/0n=0
0, = a9 (1 —1? 4 waw(aco-hcp +Rcostipy) 4 6% -+ 6"
€ 2 B sinn® \ad '
1 o azge™
0 = 5 2% (1 — 1?) 4,2 _(cosnp — ch qy) + 0,
2 A=)ty g e —ch o) + (2.9)

* = (0, — 0;)” = '%57”]‘023 ;13“ , 0"=10,"—86"

K \-1 ' %, \-1
— () = (), ad=t

Analysis of exact solutions gives a result coinciding with that obtained from the above
qualitative considerations, namely that the difference of temperature of electrons
and ions changes, within the 8- layer, from the values prevailing close to the wall, to
the wall, to the value, (6, — 6;)>® , constant in the main flow. When 8,4>-0w, ion
temperature increases with distance from the wall, electron temperature outside the 5~
layer also increases, although it may diminish near the wall, Thus in the case 4 the

oo electron temperature will decrease with

7 e 4) distance from the wall if (8, — 6;)" >
> (8, — 8;)° @Ke/%is and will increase
when the inequality carries the opposite sign.
Since @X. / %; =>> 1, the temperature of
electrons in the 8-layer will increase when
the temperature differences close to the

~loy

0” g:‘

FIG. 2 wall are not too great. We shall now consi-
der two cases.

1. Let (9, —0:)” > (8, — 0:)®. Notice that in case B, the temperature differ-
ence developing on the wall satisfies this inequality. The solutions show clearly, that
the ion temperature changes in the &-layer exceed electron temperature changes by the
factor (B, — 6;)". Therefore the temperature difference close to the wall tends to the
temperature difference at infinity in the 8- layer, and this, in general, results from the ion
temperature change within the layer,

In fig. 2 we show a qualitative picture of the behavior of ion and electron temperatures
in a quiescent plasma in the case when (8, —0,)” > (6, —0,)™. Electron temperature
varies only slightly within a layer of thickness 6 — VUY while ion temperature
variation is relatively large. Therefore, the temperature difference between the electrons
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and ions tend to the difference at infinity in the 8-layer, and this is mainly due to the
sharp changes in ion temperature.

Outside the &-layer the electron and the ion temperature profiles change in a similar
fashion, so that we always have the difference 0 . 9i~ ®,— Gi)m.

2. Let the temperature difference close to the wall be small so that the difference
(B, —0:)° << (@, — 64) (for example we can have 8." = 6°). From the analysis
of Equation (2.8} it follows that the electron and the ion temperatures vary within the
8-layer by the same order of magnitude, inferring a temperature difference of electrons
and ions outside the layer as (6, — 0;)>.

From this follows that the given temperature difference near the wall tends to the
constant temperature difference prevailing at some distance away from the wall (at
infinity), within a thin layer of thickness § ~ L / ‘/’W = ]/:c,—/“y Also in this
layer the ion temperature can vary by a magnitude appreciably exceeding the electron

temperature variations.

Equations (2.1) and (2.2) describe the behavior of electrons and ions in a quiescent
plasma in one dimension. However the results obtained will still be valid for a three-
dimensional case. And indeed, although the terms g2 (8, —6,) / 83, 82 (8, — 0,/ ate,
will appear in (2.3), because of the inequality ¢2? 3> 1, they can be neglected (this can
be done of course, in the case, when we know in advance that there will be no sharp
temperature change in the x- and z- direction).

The term 82{8, —0,) / 0® will remain,because sharp variation in temperature dif-
ference is expected in the direction normal to the wall. Thus Equation (2.3) remains un-
altered. The derivatives of the ion and electron temperatures with respect to x and z will
also enter (2.1) and (2.2). They will not however in general alter the qualitative structure
of the behavior of the ion and electron temperatures in a thin layer of thickness §.

In like manner, terms representing the work of viscous forces will not affect qualita-
tively, the temperature changes within the 8- layer.

3. The boundary layer in the case when there is temperature difference between
electrons and ions in a moving plasma. Let us write the energy equations for the ions and
electrons (1.3), (1.4) and (1.6) in dimensionless form. From the inequality @7, < 1,
together with the identity (1.7) it appears, that |V, — Vi |/ U <€ 1.(For clarity it is as-
sumed that ] ~GUH [ ¢, so that jo ~ 1). The latter inequality allows considerable
simplification of Equations (1.3) and (1.4). For instance instead of dixTy / dt we can
write d7'; / di, tensors of viscous stresses can be expressed as the derivatives of the
average velocity of the mixture V instead of the derivatives of the velocities of each com-
ponent. For clarity we will regard the flow steady, and the medinm incompressible. Ex~
tension to the case of compressible fluid is easy.

With the above assumptions, Equations (1.3) and (1.4) become

.6.?3 ..?..zva_eg—_?_—j aee '_,Q..mi__.a_e_%
98 T2 U BE T GE Rwijw, 0t | 0% Rowijne 87
Az, ., M. A
+ g Mo —Ti* 7 P—1°(6.—8)

Su
2 (3.1)
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For convenience we shall denote the terms in Equations (3.1) and (3.2}, by the letters

(3.2)

Wke, Wi, where % is the number of the term. The order of magnitude of term wé, des-
cribing Joule heating, is M?Aj,2 / R ~ A, Term W¢, describing the work against the
forces of electror viscosity can be of the same order as other terms entering (3.1), for
instance Joule heating within and only within the dynamic, viscous boundary layer; outside
this layer gy / Gy = 0 and W§ =0. It can however be shown, that when 7, =~ 7', and
when inside the viscous layer, the term describing the work against electronic viscosity

is much smaller than the Joule heating. Actually if we compare the order of magnitude of
the term corresponding to work of electron viscous forces and that of the Joule heating
within the viscous boundary layer, we obtain

W k(] T\ m Yy
.;e — (—,fi) *—-e-*) (3.3)
W i 2m;
In the following, for definiteness, we shall consider the values of parameters for which
the term representing the work of electron viscous forces is small and can be neglected in
{3.1). When the electron temperature increases, the work against electron viscous forces

increases too. Evidently cases can be envisaged where ratio (3.3) becomes greater than,
or equal to unity, and the term in question should then be included iz {(3.1).

We will now turn to the behavior of the temperature difference §, — §; in the im-
mediate neighbourhood of the wall (within the ionic temperature boundary layer, see
section 4). For convenience we will assume R°and R°%; /%, constant, bearing in
mind that we are considering the behavior of the temperature in the boundary layers close
to the wall. We shall further neglect the second derivatives of temperature with respect
to 77 as compared with the derivatives of 7.

Let us subtract (3.2) multiplied by R® from (3.1) multiplied by R°¢; [ X, . Taking
into account the previous estimates we arrive at the following (in section 4 it was shown
that in the number of cases, the term W§ can be neglected in (3.1))

3 L% % p 30, % po 3 228 po 2% po
b 3 2 o Bt A ?'TH"RM .0
3.4
(0, — 6;) Buys | M2, a0 %
=—“5*m“3*~@’<9e~9f>—’“(?5ﬁ“) T MR 5

As before @° is determined from Formula (2.4).

Now we shall estimate the order of magnitude of the terms which enter (3.4). In many
actual cases, as we have already shown, q>2> 1. Values of (})2 are given in the table.
The first term on the right-hand side which is connected with thermal conductivity, can be
of the same order as the second term on the right-hand side only, ifthe gradient of the tem-
perature difference is very great, i.e. if, close to the wall there is a layer in which a
rapid temperature change occurs in the direction normal to the wall. Let us estimate the
order of magnitude of the thickness of this layer, denoting it by 8. To do this we shall
write the orders of the first and second terms on the right-hand sides of Equation (3.4)
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1(0, — 8,)° — (8, — 8,)" |

ST ) 9*[8. —6: | (3.5

From this it follows that when [(§, — 0 ) 0. — 0:)” |~ |6e — B4 lthe terms
considered will all be of the same order when § ~L/p = th / v. This 8-layer will
be equivalent to the 8-layer discussed in section 2 in connection with the quiescent plasma.
Within the &-layer the first term on the right-hand side of (3.4) should be taken into account,
outside the layer however, it can be neglected. Note that when } / ¥ ~ 1 outside the
8-layer (5 ~ 8; when A / p°® ~ 1, section 4), and when A / p°>> 1{ outside the
8 ~layer, Eqnatzon (3.4) transforms into an equation for the electron temperature (3.1, so
that an increase in temperature difference results from the increase in electron temperature

for very slight change in the ion temperature,

The thickness of the §-layer is V'V° times less that the thickness of the viscous
boundary layer (section 4), When V‘F ~ 1 the thickness of the §-layer is of the order
of Bv which is the thickness of the viscous boundary layer. At the same time, within the
8-layer the order of the term (au/ 61])2 ~ R. Evidently the order of this term as well as
that of the derivative J0;/ 87 remains as before within the 8~layer, and in case when
§ < 8, (for Y*>> 1). When y°®> 1, the component of velocity s has no time to react
in time the value u*° within the 8-layer. The order of ud ~ u°°/ ]/F. It follows from the
continuity equation that the orders of terms du / ¢ and Jv ]/ On coeincide, hence withe
in the 8~layer we have
I N S S
ZLTVE ViR vVE

Evidently the order of magnitude of the derivatives 39, / 0%, and 99;/ 6% also
decreases within the 8-layer although it can be shown, that the terms which contain these

P~

derivatives can be neglected, when the derivatives ore of the order of unity, Indeed, using
the previous estimates we can easily show that the third term on the left-hand side of
(3.4) is ) Vy times smaller than the third viscous term in the right-hand side of (3.4)
and, it can be neglected when A V‘V >> 1. Similarly the first term on the left-hand side
is A V'y times smaller than the last term on the right<hand side, and can alsc be ne-
glected when ) VF} 1 . The last term on the left-hand side is Y° /A times smaller
than the viscous term {(third term on the right-hand side). The last term on the right-hand
side is %; / %, times smaller than the penultimate one, and can also be neglected. With
use of these estimates, equation (3.4) can be simplified. When A ~ 1, and 9° > 1
Equation (3.4) assumes a simple form
2(0 —
‘2_(9;_7?& — ¢ (B, —0;) — A <_3%)2 -0 (3.6)
When y°>> 1, convection terms are absent from the equation for the temperature dif-
ference in the 8~layer, since the velocity within this layer is very small.

It has already been mentioned that outside the S-layer the second derivative of tem-
perature difference cannot be neglected. Using (3.6) it is easy to write the order of the
temperature difference on the outer boundary of the 8- layer

O —8)" = — pe (55 ) =

7 3.7
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For the values of y° 1, the temperature difference is described by a differential
equation which can easily be obtained from (3.4), using the above estimates. Nevertheless,
the order of the temperature difference at the outer boundary of the §-layer is still
(Be —04:)® =~ — A. The negative sign in (3.7) results from the fact, that in the &-layer
the ions heat up to a greater degree than the electrons. This statement is connected with
the assumption that M? / R ~ 1, j, ~ 1, and A (Ou | On)® ~ AR; of course, when
M2/ R>>1 orjo»1or(0u/dn)? 3 R, Joule heating in the 8-layer can exceed
the viscous dissipation, so that the temperature of the electrons will exceed that of the

ions.

In section 5 we shall show that in the outside stream the temperature difference is

Mz, .1 A 2
(ee"‘ei) z(ee_ei)oos iy }\Jozé?y ee“"ei"‘-’? <when%—~ i)
Thus, whether the temperature difference close to the wallis 0%, = 0¥ or

0. — 9,)® > 0 — 0i)®, in a layer of thickness 8, the temperature difference, in
general, varies from the value close to the wall (9e —63)" to the value, the modulus of
which is of the order smaller or equal to the value (B, — 0:)®° at infinity. This is also

valid for values y° ~ 1, R° > 1.

In other words, whatever the temperature difference existing close to the wall, at a
distance § ~ L [ 14 yR° = in / ¥ from the wall, screening of that temperature

difference occurs. Also, at the outer boundary of the S-layer, the temperature difference
reaches the values which are defined by the collateral action of Joule heating, viscous
heating and thermal conductivity when y°>> 1, and with the convection terms added, when
7° —~ 1. Let us examine the behavior of electron and ion temperatures within the §-layer

using Equations (3.1) and (3.2).

It has already been shown that the term W$ can be neglected from the equation over
a large range of parameter variation. Since we are interested in the phenomena within the
temperature boundary layers, we will neglect the second temperature derivatives with
respect to x. Besides, it was shown in section 4, that in the electron temperature bound-
ary layer, the term WS can be neglected in several cases. It is easy to see that in the

8-layer this term could have been ommitted from the outset.

If we carry out further evaluations analogous to those used to simplify Equation (3.4),
we can show that the terms W ~ 1/]/'\73; Wi ~1/ V‘VQ, and Wpi ~1 /y°
will be smaller than (when %°>> 1) and of the order (when y° ~ 1) of the terms W,° ~ A,
and Wit ~ A (L ~ 1) respectively. In the case when y°>> 1, terms W%, W i, and
W can be neglected, and Equations (3.1) and (3.4) assume, within the 8-layer, a form
similar to that of (2.1) and (2.2); it is only because of the influence of the term of viscous
dissipation in the equation for the ion component, that the difference of the temperatures
of electrons andions at the outer boundary of the 8-layer is of the order ( ~ A/y°) and
e / H; times greater in terms of the absolute magnitudes, than the temperature differences

worked out in the problem discussed in section 2

220, M2, ., oi___ oRofi_ 9, —0; —0
W—{_—R— jol R x, it %e(e ) (3.8)
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8,

A (S R @ — 0) =0

Although these equations are easy to solve, the required result can easily be obtained
from a qualitative investigation.

The difference of the temperatures of the electrons and ions entering Equatien (3.8),
will be, near the wall, of the order of the ditference (6, —8 i)w in case 1, when
0, —8)">@, —8,)% and less than, or of the order (8, —-Bi)s in case 2, when
®,— )" <€®,—0,°.

Using these estimates and Equations (3.8) we can write the orders of the second de-
rivatives of the electron and ion temperatures.

In case 1

—}2—:- ~ (8= O TR S %22— ~— (0, — 8)° 1°R° (3.9)
In case 2

%”(93—91')5 Tono% , %%’“'i‘(ﬁe*‘ 0% 1° R (3.10)

Let us write the second derivatives of temperature in the S« layer

9%y [{9&' ’ (%)w]L 0 — 0 1 (%)5 (3.11)
™ \311) T\om/ 18 TU/YRT T8 \oy

Assuming that (20, /3n)® ~ (89; / )%, we can conclude from (3.8) to (3.11) that in
both cases the ion temperature varies within the 8-layer by an amount which is much

eater than the change in the temperature of the
A 7 gr g
i electrons, therefore the change in the given tem-

perature differences between electrons and ions
A from the value near the wall to the value at the
8, outer boundary of the §-layer is caused mainly by
/ / the sharp change in the temperature of the ions.

p——— ~ 8@ A possible temperature profile is shown in fig. 3
o; 3;' 87 87  which is described in section 4. When yoo~1,

FIG. 3 the thickness of the 8~layer coincides with the

§;

thickness of the viscous and the ionic temperature
boundary layers. Using the estimates given above, we can easily write the equation an-
alogous to (3.6) describing the behavior of the temperature differences in the 8-layer, It
is also easy to perform similar estimates, when the order of the term A (Ju/ n)® within
the 8-layer (when y°>> 1), differs from AR, and j, S 1,

4. Electron and ion temperature boundary layers. We will now discuss possible ways
of simplifying Equations (3.1) and (3.2) in the temperature boundary layers when R°>» 1
and R°%; / %, >> 1. Note that since %; / %, << 1.(Formula (2.5)), a situation can

arise when R®> 1 and RQ"i /xe g 1. This case will be discussed at the end of this
section.

In section 5 we will show that the temperature difference in the outer stream is

9, — 8, ~ M2/ 2Ry®
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However, a situation is possible when at the wall and therefore in its immediate proxi-
mity, or at the channel entry, the temperature difference is found, which is much greater than
the temperature difference established in the outer stream. Hence a situation is possible
when the terms W€ and W¢ are of next higher order, than the terms W and W respectively.
When we estimate the thickness of ion and electron temperature boundary layers we must
compare the orders of magnitude of terms containing the second derivative in n with char-
acteristic (maximum) order of the other terms.

It has been shown in the preceding paragraph that the large temperature difference
established close to the wall evens out within the thin §«layer of the thickness
8 ~L/VYE® (ie. it tends to the values determined by Joule heating, viscosity and
other terms appearing in the equations). Both, the thickness of the layer, and the temper-~
ature difference within it are known, therefore comparing the orders of the rerms W& and
WS with that of W, we can arrive at the order of the electron and ion temperatures at the
outer boundary of the Sflayer, as was done in section 3. Terms associated with thermal
conductivity (W5 and W) are significant not only within the §-layer, but also at some
distance outside it, within the temperature boundary layers where the term ¥° (0, — 0.
is smaller than or of the same order as the terms describing Joule or viscous dissipation.

Now let us estimate the order of magnitude of these distances, They will, in fact, be the
thicknesses of the temperature boundary layers. Terms depending on electron thermal con-
ductivity can be of the same order as the terms describing Joule heating only, when the
gradient 00,/ On is very large, i.e. when there is a layer near the wall, in which a rapid
change in electron temperature takes place in the direction normal to the wall, We will
call such a layer the electron temperature boundary layer, and denote its thickness by Be'

We will assume that 0°8, / 052 ~ 1, and that this term can be neglected in com-
parison with %9, / n® ~ 8,7%. Comparing the orders of the terms W and W2, we con-
clude that the transport of heat due to electron thermal conductivity will be of the same
order as heat dissipated by Joule heating only, when the electron temperature boundary
layer thickness satisfies the following

8, \2 Ru, 8.\ x, 1 My oy
(T) ~ Mihig R {T> ~ when A o {4.1)

In section 1, we have estimated the quantities determining the viscous boundary
layer. In this connection we should remember, that the thickness of the dynamic bound-
ary layer is given by 8, ~ L / ]/ﬁ

Let us now compare the order of the thickness 38 with that of the viscous boundary
layer, when M2% /| B ~ {

8y 1oouy RO i

(i 7%.) ~ (0.246 x;:)
The orders of the quantities %; / %, and A are shown in the table. It is clear that

in many practical cases } < 1, M) R ~ {1.Thus in a fully ionised plasma §, > 8,

i.e. the thickness of the electron temperature boundary layer is very much greater than that

’
li2

(4.2)

of the viscous boundary layer. In the previous section it was shown that the thickness of
the 6-layer was less than (when V?" > 1), or of the same order as (when V’V—Q ~1))
the thickness of the viscous boundary layer. Hence, from the inequality 8, > §, it
follows, that 8,=>>8 is even more pronounced. Thus in practice, the thickness 56 can
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be measured from the wall just as in the case when W, ~ W% Generally speaking,
the first term in Equation (3.1) is of the same order of magnitude as the term describing
Joule heating. Outside the viscous boundary layer v =0 and the term W$ can be neglected.
The order of the term W$ within the viscous houndary layer is equal to 8,/ 8,. Compar-
ing the orders of magnitude of the terms W$§ and WS, we have

LSy v (M?] R ~ 1) (4.3
Ws

It can be seen from the table that this ratio is,in a fully ionised plasma, very much
smaller that unity in many actual cases, therefore W3 in Equation {3.1) can be neglected.

Now let us estimate the orders of the terms in Equation (3.2), Terms describing the
ionic thermal conductivity can be of the same order as those describing the viscous ionic
dissipation, only in the case, when the gradient 90; / dn is very large, i.e. if there is a
layer near the wall, exibiting a sharp temperature variation in the direction normal to that
wall. This layer will be referred to as the ionic temperature boundary layer. Its thickness
will be denoted by 5i (remembering, when Wgi>> W,i, the thickness of the Si-layer
is measured not from the wall, but from the outer boundary of the §-layer). As in the case
of the electron layer, we neglect the term a*_ei / 652 as compared with 3% ; / one.
Comparing the orders of the terms W, and W}, we come to the conclusion that heat transport
due to the jonic thermal conductivity will be of same order as the heat evolved in the
work against the forces of ionic viscosity only, if the thickness of the ionic boundary
layer satisfies the following relation (remebering that M2 /| R ~ 1)

(8: /Ly ~1/AR® (4.9

Now let us compare the order of the quantity Bi with the thicknesas of the viscous
boundary layer

818~ VOTIB A~ 11y )7 ws
Using the data from the table we find, that the thickness of the ionic temperature
boundary layer, is of the same order as that of the viscous boundary layer. If we compare
the thickness of the §-layer with the thickness of the ionic temperature boundary layer
(M? /R ~ 1), we find that, when y°/ A > 1 the thickness §; > 8, , while when
7%/ A ~ 1 ,thethickness §; ~ 8. We should also remember that in a highly ionised
plasma Y>> 1, and A T 1, therefore when Wi >> Wi the thickness of the

5i-layer can be measured from the wall. This can also be done when P° ~ 1,

Usually, the order of magnitude of the first term in Equation (3.2) is the same as that
of the term representing viscous dissipation. The second term in (3.2) is of the order of
the ratio 0, / §;. If we compare the second term with the fifth we get

Wy /W'~ VAR R = Y 0.246M (4.6)

for the values of the parameter, for which this ratio is less than unity, and the second term
in Equation (3.2), can be neglected.

The equations representing the electron and ionic temperature boundary layers take
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the following form

3 aee _|_ o 1 00, , A
z

53 ”W = o For e M1 (0,—8) @D
3 50, 3 0 100, , A ou\ . o
Su Gy P e = wmr o T ) TTO—8) 48

Equation (4.7) represents the case, when the ratio er/ W,® ~ 1 Formula (4.3)).

Now let us compare the thicknesses of the electron and ionic temperature layers
8; /0~ V'%i ] %, (4.9)

It is clear from the table, that in a fully ionised plasma where %; / X, <1, the
electron temperature boundary layer is much thicker than the ionic temperature boundary
layer. We should note that increase in the ratio 0. /9i leads to the increase in the ratio
0, / 6; while when M?/R increases the thicknesses of the electron and ionic temperature

layers decrease.

Figure 3 gives a qualitative picture of the possible behavior of the ion and electron
temperatures in a moving plasma, when °>> 1 (under these conditions 6 <£ 8, << 8,)
and 6 o >0‘w. The electron and ion temperatures vary from the values at the wall to the
values prevailing in the outer flow, over the electron (of thickness 36) and ionic {of
thickness 5:') temperature boundary layers respectively. In a layer of thickness & a sharp
change in the ionic temperature takes place, from the value close to the wall to the value
determined by ionic viscous dissipation in accordance with the equations given above.

Outside the 8- layer but within the ionic temperature layer, the ionic temperature will
increase ; the temperature difference is described by Equation (3.4) in which the term
with the second order derivative can be neglected. Outside the ionic temperature layer,
Equation (3.4) transforms into (3.1) and the temperature difference varies only at the
expense of temperatures of the electrons with the ionic temperature remaining constant,
while the ion temperature obeys the equations for the external stream. It should be noted,
that the magnitudes of the ratios 8,/8; = V"—e_/—": >1, 8,/ > 1 (see the table and
fig. 3) are considerably reduced.

If R®>» 1 while R%; [ %, <C 1, then the ionic temperature boundary layer exists,
and as before, is described by Equation (4.8) while the electron temperature boundary
layer is absent. The electron temperature should then be determined from Equation (3.1)
in which the work against forces of electron viscosity (estimate (3.3)), and the second term
(estimate (4.3)) can, inmost cases, be neglected. Equation (3.1) for electron temperatures

(elliptical) becomes then

3 08, 9 1 00,
5 U + > T*a—:ﬁ““—m,/ueﬁ
(4.10)
1 08,
+aqRu,/x m M" —17(0. —6)

3. E quations for electron and ionic temperatures in the external stream. Let us write

the equations for electron and ionic temperatures in the external stream in the form

3 08,  ME,. °
U g7 = g Mo =176 —8) (5.1)
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w98 = 1° (8, — 0) (5.2)

From the table it is evident that y°>> I, over a wide range of variation of the para-
meters. The large values of y° define the specific behavior of electron and ion tempera-
ture differences §, — 0; along the channel. Subtracting (5.2) from (5.1), we obtain

3 (0, —8) ME,., om
—u ‘“””—eag Vo= Ajo2 — 2v° (8, — 63) (3.3)

The term on the left-hand side of (5.3) can be of the same order as the second term
on the right-hand side only within a thin layer, which will be referred to as the y- layer,
and which has a large temperature gradient. Outside thzis y-layer

M:,. 1
ee""ei = (ee e ei)w = I x]ozzzjr‘{,

A. Suppose that the difference (98 - 8;’)‘ > (Be - Gi)w. is given at the cross-section
£=§&. It is easily seen that the difference (B, — 0;), tends to the value
©. — 8™ in a thin y-layer of thickness ] ~ 3Ly / 4v° while outside this layer we
have, 6, —6; = (0, --9{)00.

B. Now suppose that the difference
0, —0:)1 << (B, — 0™ is given at the

cross=section £ = £ (for instancewe could have (8. — 8.); = 0). The difference
8, —08; tendsto the value (B, — @)™ within the thin y-layer of the same thick-

ness | ~ 3Lu [ 4y°.
1t is also possible to predict the qualitative behavior of the temperature profiles 96

and 3‘- within and without the y-layer in the manner analogous to that in section 2. when we
studied the behavior of the temperatures close to the wall in a quiescent plasma.

It should be noted that at large values of y° in the y-layer, the temperatures of the
ions and electrons can vary rapidly. In general therefore, such values of the parameters are
possible, for which the thermal conductivity of the components should be taken into ac«
count, when determining the temperature profiles of electrons and ions inside the y-layer.
We should also note that, when 4 ~. y°, 8*/L ~ 1. When this happens, the plasma flowing
through the channel passes through it so rapidly, that the relaxation of electron and ion
temperature takes place along the whole length of the channel. When u 3> y° the plasma
travels so rapidly, that in practice, the relaxation does not have time to take place.

It should be pointed out that the presence of walls is not an essential requirement
either in the formation of the - layer nor in the case of the y-layer in the external stream.
Any temperature difference caused by the outside sources at any channel section will
attain the values, which are determined, generally speaking by the combined effect of
Joule heating, viscosity, convection and thermal conductivity within the thin layer of
thickness 8 in agreement with what was said in section 3.

Note also the assumption made about the incompressibility of the medium in the pres-
ent studies is not in itself significant,and was only done to cut down the length of the
equations.

6. Method of approximate estimation of the temperature boundary layers, We can use
the above estimates of the thickness of the boundary layers for a suggested approximate
method of solving the boundary layer equations. It should be noted that, in general, even
in the case of incompressible fluid, the dynamic problem is not divorced from
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the thermal one. This is because the coefficient of transport depends on the electron and
ion temperatures. Let us assume that the problem is solved for the external stream. From
section 4, it follows, that 69, > 61 i 61,. Within the 5i-layer the ion temperature
satisfies (4.8). Outside the Bi-layer the ion temperature satisfies (5.2) for the external
stream. Everywhere within the 5e -layer and also outside the Si-layer, the electron temper-
ature satisfies Equation (4.7) for the electron temperature boundary layer.

Let us work out the electron temperature distribution in the first approximation.

Into Equation (4.7) for electron temperature let us insert the values of all the para-
meters equal to those in the external siream, i.e. velocity equal to that in the outside
stream, likewise ion temperatures, etc.

Knowing the distribution of all the parameters in the outside stream it is possible to
find the temperature distribution of the electrons in the electron boundary layer, from the
equation obtained. This distribution will be, in general, close to the real one everywhere
with the exception of a region close to the wall and of thickness of the order of the ion
temperature layer. In order to find the ion temperature distribution in the ion boundary
layer and the velocity distribution in the viscous boundary layer, we must insert into
Equation (4.8) for ion temperature and into (1.2) for the equations of motion, the electron
temperature found in the approximate method described above. Note here that the elec-
tron temperature not only enters the relaxation term ¥° (8, — @), but also the transport
coefficient. Solving these equations together with equations of continuity, of state, and
the Maxwell equations we can, to a first approximation find the distribution of velocity
components, of the ion temperature, the density and other quantities within a layer of
thickness §; ~ §,.

Improved values of electron and ion temperatures can be obtained by subsequent ap-
proximations. Thus to obtain the electron temperature distribution in a second approxi-~
mation, values from the first approximation of ion temperatures, velocity components, etc.
obtained from the solutions of the viscous boundary layer problem, should be inserted in
(4.7). After that, the solution of the equation for the electron temperature gives us the
second approximation to the electron temperature distribution in the electron boundary
layer.

Using the second approximation for the electron temperature it is possible to construct,
by the same method, the second approximation for the ion temperatures, velocities etc.
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